Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning
نویسندگان
چکیده
منابع مشابه
Multinomial Logistic Regression with SPSS
Subjects were engineering majors recruited from a freshman-level engineering class from 2007 through 2010. Data were obtained for 256 students. The outcome variable of interest was retention group: Those who were still active in our engineering program after two years of study were classified as persisters. Those who were no longer in our engineering program were classified as having left in go...
متن کاملHyperspectral segmentation with active learning
This paper introduces a new supervised Bayesian approach to hyperspectral image segmentation, with two main steps: (a) learning, for each class label, the posterior probability distributions, based on a multinomial logistic regression model; (b) segmenting the hyperspectral image, based on the posterior probability distribution learnt in step (a) and on a multi-level logistic prior encoding the...
متن کاملMultinomial logistic regression
Multinomial logistic regression is the extension for the (binary) logistic regression when the categorical dependent outcome has more than two levels. For example, instead of predicting only dead or alive, we may have three groups, namely: dead, lost to follow-up, and alive. In the analysis to follow, a reference group has to be chosen for comparison, the appropriate group would be the alive, i...
متن کاملMultinomial Logistic Regression Ensembles
This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the pro...
متن کاملExtreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification
A Fast and Robust Framework for Hyperspectral Image Classification Faxian Cao1, Zhijing Yang1*, Jinchang Ren2, Wing-Kuen Ling1 1 School of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, China; [email protected]; [email protected]; [email protected] 2 Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK; jinchan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2010
ISSN: 0196-2892,1558-0644
DOI: 10.1109/tgrs.2010.2060550